Naast de gewone magische vierkanten, waarbij de som van de getallen in de rijen, kolommen en diagonalen gelijk is, zijn er ook magische vierkanten waarbij dit geldt voor het product van de getallen. Deze kun je zelf gemakkelijk vinden. Ik laat verderop zien hoe. Er zijn ook vierkanten, waarbij de som van het kwadraat (of een hogere macht) van de getallen steeds gelijk is. Deze magische vierkanten zijn moeilijker te vinden dan de gewone en soms bestaan ze alleen vanaf een bepaalde orde van het vierkant. ☞ De orde van een vierkant is het aantal rijen (en dus ook het aantal kolommen).
Vierkant met kwadraten
Bij deze vierkanten zijn de getallen zelf niet magisch, maar de kwadraten van de getallen wel.
Hier is een voorbeeld:
682
292
412
372
172
312
792
322
592
282
232
612
112
772
82
492
4624
841
1681
1369
289
961
6241
1024
3481
784
529
3721
121
5929
64
2401
De som van de kwadraten in elke rij, kolom of diagonaal is 8515
Bimagische vierkanten
Als de getallen zelf ook een magisch vierkant vormen dan noemt men dit een bimagisch vierkant. Men vermoedt dat er geen bimagische vierkanten bestaan met een orde kleiner dan 8. Hier is een voorbeeld:
16
41
36
5
27
62
55
18
26
63
54
19
13
44
33
8
1
40
45
12
22
51
58
31
23
50
59
30
4
37
48
9
38
3
10
47
49
24
29
60
52
21
32
57
39
2
11
46
43
14
7
34
64
25
20
53
61
28
17
56
42
15
6
35
De som in elke rij, kolom of diagonaal is 260
256
1681
1296
25
729
3844
3025
324
676
3969
2916
361
169
1936
1089
64
1
1600
2025
144
484
2601
3364
961
529
2500
3481
900
16
1369
2304
81
1444
9
100
2209
2401
576
841
3600
2704
441
1024
3249
1521
4
121
2116
1849
196
49
1156
4096
625
400
2809
3721
784
289
3136
1764
225
36
1225
De som in elke rij, kolom of diagonaal is 11180
Trimagische vierkanten
Er bestaan trimagische vierkanten. Dat zijn vierkanten die magisch blijven als alle getallen worden gekwadrateerd of tot de derde macht genomen. Er zijn alleen trimagische vierkanten bekend van orde 12, 32, 64, 81 en 128. Ik heb er een van orde 12.
1
9
75
74
140
122
55
132
73
58
80
51
22
119
141
8
101
76
27
117
64
98
34
63
33
45
35
106
124
142
95
68
2
84
105
31
41
115
48
49
42
86
135
91
121
116
6
20
62
107
57
12
60
67
130
11
109
138
92
25
66
93
14
43
37
126
89
99
32
16
127
128
79
52
131
102
108
19
56
46
113
129
18
17
83
38
88
133
85
78
15
134
36
7
53
120
104
30
97
96
103
59
10
54
24
29
139
125
112
100
110
39
21
3
50
77
143
61
40
114
123
26
4
137
44
69
118
28
81
47
111
82
144
136
70
71
5
23
90
13
72
87
65
94
De som in elke rij, kolom of diagonaal is 870
12
92
752
742
1402
1222
552
1322
732
582
802
512
222
1192
1412
82
1012
762
272
1172
642
982
342
632
332
452
352
1062
1242
1422
952
682
22
842
1052
312
412
1152
482
492
422
862
1352
912
1212
1162
62
202
622
1072
572
122
602
672
1302
112
1092
1382
922
252
662
932
142
432
372
1262
892
992
322
162
1272
1282
792
522
1312
1022
1082
192
562
462
1132
1292
182
172
832
382
882
1332
852
782
152
1342
362
72
532
1202
1042
302
972
962
1032
592
102
542
242
292
1392
1252
1122
1002
1102
392
212
32
502
772
1432
612
402
1142
1232
262
42
1372
442
692
1182
282
812
472
1112
822
1442
1362
702
712
52
232
902
132
722
872
652
942
1
81
5625
5476
19600
14884
3025
17424
5329
3364
6400
2601
484
14161
19881
64
10201
5776
729
13689
4096
9604
1156
3969
1089
2025
1225
11236
15376
20164
9025
4624
4
7056
11025
961
1681
13225
2304
2401
1764
7396
18225
8281
14641
13456
36
400
3844
11449
3249
144
3600
4489
16900
121
11881
19044
8464
625
4356
8649
196
1849
1369
15876
7921
9801
1024
256
16129
16384
6241
2704
17161
10404
11664
361
3136
2116
12769
16641
324
289
6889
1444
7744
17689
7225
6084
225
17956
1296
49
2809
14400
10816
900
9409
9216
10609
3481
100
2916
576
841
19321
15625
12544
10000
12100
1521
441
9
2500
5929
20449
3721
1600
12996
15129
676
16
18769
1936
4761
13924
784
6561
2209
12321
6724
20736
18496
4900
5041
25
529
8100
169
5184
7569
4225
8836
De som in elke rij, kolom of diagonaal is 83810
13
93
753
743
1403
1223
553
1323
733
583
803
513
223
1193
1413
83
1013
763
273
1173
643
983
343
633
333
453
353
1063
1243
1423
953
683
23
843
1053
313
413
1153
483
493
423
863
1353
913
1213
1163
63
203
623
1073
573
123
603
673
1303
113
1093
1383
923
253
663
933
143
433
373
1263
893
993
323
163
1273
1283
793
523
1313
1023
1083
193
563
463
1133
1293
183
173
833
383
883
1333
853
783
153
1343
363
73
533
1203
1043
303
973
963
1033
593
103
543
243
293
1393
1253
1123
1003
1103
393
213
33
503
773
1433
613
403
1143
1233
263
43
1373
443
693
1183
283
813
473
1113
823
1443
1363
703
713
53
233
903
133
723
873
653
943
1
729
421875
405224
2744000
1815848
166375
2299968
389017
195112
512000
132651
10648
1685159
2803221
512
1030301
438976
19683
1601613
262144
941192
39304
250047
35937
91125
42875
1191016
1906624
2863288
857375
314432
8
592704
1157625
29791
68921
1520875
110592
117649
74088
636056
2460375
753571
1771561
1560896
216
8000
238328
1225043
185193
1728
216000
300763
2197000
1331
1295029
2628072
778688
15625
287496
804357
2744
79507
50653
2000376
704969
970299
32768
4096
2048383
2097152
493039
140608
2248091
1061208
1259712
6859
175616
97336
1442897
2146689
5832
4913
571787
54872
681472
2352637
614125
474552
3375
2406104
46656
343
148877
1728000
1124864
27000
912673
884736
1092727
205379
1000
157464
13824
24389
2685619
1953125
1404928
1000000
1331000
59319
9261
27
125000
456533
2924207
226981
64000
1481544
1860867
17576
64
2571353
85184
328509
1643032
21952
531441
103823
1367631
551368
2985984
2515456
343000
357911
125
12167
729000
2197
373248
658503
274625
830584
De som in elke rij, kolom of diagonaal is 9082800
Magische vierkanten met × in plaats van +
Als je in plaats van de getallen op te tellen, ze met elkaar vermenigvuldigt kun je ook een magisch vierkant krijgen. Het product van alle getallen in de rijen, kolommen en diagonalen is dan hetzelfde. Hier is een voorbeeld:
2
256
8
64
16
4
32
1
128
Je kunt zelf heel gemakkelijk een vermenigvuldiging magisch vierkant maken: maak een gewoon magisch vierkant, eventueel met mijn programma. Kies een grondtal, bijvoorbeeld 2. Vervang alle getallen in het magisch vierkant door dat grondtal tot de macht (getal uit het gewone magisch vierkant). Het bovenstaand vierkant is afgeleid van het volgende gewone magisch vierkant door grondtal 2 te kiezen.
1
8
3
6
4
2
5
0
7
De magische constante is in dit geval 12.
We kunnen een ander vermenigvuldiging magisch vierkant maken door grondtal 3 te kiezen:
31
38
33
36
34
32
35
30
37
→
3
6561
27
729
81
9
243
1
2187
Je kunt dus vanuit een gewoon magisch vierkant oneindig veel verschillende vermenigvuldiging magische vierkanten maken. De magische vermenigvuldigingsconstante is gemakkelijk bereken: het grondtal tot de macht (magische constante van het gewone vierkant). Dus bij het bovenstaande vierkant: 312 = 531441.
Magisch vierkant voor zowel som als product
Dat kan ook: de som in elke rij, kolom en diagonaal is 840, het product is 2058068231856000.