Bijzondere magische vierkanten

Naast de gewone magische vierkanten, waarbij de som van de getallen in de rijen, kolommen en diagonalen gelijk is, zijn er ook magische vierkanten waarbij dit geldt voor het product van de getallen. Deze kun je zelf gemakkelijk vinden. Ik laat verderop zien hoe.
Er zijn ook vierkanten, waarbij de som van het kwadraat (of een hogere macht) van de getallen steeds gelijk is. Deze magische vierkanten zijn moeilijker te vinden dan de gewone en soms bestaan ze alleen vanaf een bepaalde orde van het vierkant.
☞ De orde van een vierkant is het aantal rijen (en dus ook het aantal kolommen).

Vierkant met kwadraten

Bij deze vierkanten zijn de getallen zelf niet magisch, maar de kwadraten van de getallen wel.
Hier is een voorbeeld:
682292412372
172312792322
592282232612
11277282492
462484116811369
28996162411024
34817845293721
1215929642401
De som van de kwadraten in elke rij, kolom of diagonaal is 8515

Bimagische vierkanten

Als de getallen zelf ook een magisch vierkant vormen dan noemt men dit een bimagisch vierkant. Men vermoedt dat er geen bimagische vierkanten bestaan met een orde kleiner dan 8.
Hier is een voorbeeld:
164136527625518
266354191344338
140451222515831
23505930437489
383104749242960
522132573921146
431473464252053
612817564215635
De som in elke rij, kolom of diagonaal is 260
256168112962572938443025324
676396929163611691936108964
11600202514448426013364961
52925003481900161369230481
14449100220924015768413600
270444110243249152141212116
184919649115640966254002809
372178428931361764225361225
De som in elke rij, kolom of diagonaal is 11180

Trimagische vierkanten

Er bestaan trimagische vierkanten. Dat zijn vierkanten die magisch blijven als alle getallen worden gekwadrateerd of tot de derde macht genomen. Er zijn alleen trimagische vierkanten bekend van orde 12, 32, 64, 81 en 128. Ik heb er een van orde 12.

1975741401225513273588051
221191418101762711764983463
334535106124142956828410531
411154849428613591121116620
6210757126067130111091389225
669314433712689993216127128
79521311021081956461131291817
83388813385781513436753120
1043097961035910542429139125
1121001103921350771436140114
123264137446911828814711182
1441367071523901372876594
De som in elke rij, kolom of diagonaal is 870
1292752742140212225521322732582802512
222119214128210127622721172642982342632
332452352106212421422952682228421052312
412115248249242286213529121212116262202
6221072572122602672130211210921382922252
662932142432372126289299232216212721282
79252213121022108219256246211321292182172
83238288213328527821521342362725321202
1042302972962103259210254224229213921252
1122100211023922123250277214326124021142
123226242137244269211822828124721112822
1442136270271252232902132722872652942
1815625547619600148843025174245329336464002601
484141611988164102015776729136894096960411563969
108920251225112361537620164902546244705611025961
1681132252304240117647396182258281146411345636400
3844114493249144360044891690012111881190448464625
4356864919618491369158767921980110242561612916384
62412704171611040411664361313621161276916641324289
688914447744176897225608422517956129649280914400
108169009409921610609348110029165768411932115625
1254410000121001521441925005929204493721160012996
151296761618769193647611392478465612209123216724
2073618496490050412552981001695184756942258836
De som in elke rij, kolom of diagonaal is 83810
1393753743140312235531323733583803513
223119314138310137632731173643983343633
333453353106312431423953683238431053313
413115348349342386313539131213116363203
6231073573123603673130311310931383923253
663933143433373126389399332316312731283
79352313131023108319356346311331293183173
83338388313338537831531343363735331203
1043303973963103359310354324329313931253
1123100311033932133350377314336134031143
123326343137344369311832838134731113823
1443136370371353233903133723873653943
1729421875405224274400018158481663752299968389017195112512000132651
1064816851592803221512103030143897619683160161326214494119239304250047
3593791125428751191016190662428632888573753144328592704115762529791
689211520875110592117649740886360562460375753571177156115608962168000
23832812250431851931728216000300763219700013311295029262807277868815625
28749680435727447950750653200037670496997029932768409620483832097152
4930391406082248091106120812597126859175616973361442897214668958324913
57178754872681472235263761412547455233752406104466563431488771728000
11248642700091267388473610927272053791000157464138242438926856191953125
140492810000001331000593199261271250004565332924207226981640001481544
186086717576642571353851843285091643032219525314411038231367631551368
29859842515456343000357911125121677290002197373248658503274625830584
De som in elke rij, kolom of diagonaal is 9082800

Magische vierkanten met × in plaats van +

Als je in plaats van de getallen op te tellen, ze met elkaar vermenigvuldigt kun je ook een magisch vierkant krijgen. Het product van alle getallen in de rijen, kolommen en diagonalen is dan hetzelfde. Hier is een voorbeeld:

2
256
8
64
16
4
32
1
128

Je kunt zelf heel gemakkelijk een vermenigvuldiging magisch vierkant maken: maak een gewoon magisch vierkant, eventueel met mijn programma. Kies een grondtal, bijvoorbeeld 2. Vervang alle getallen in het magisch vierkant door dat grondtal tot de macht (getal uit het gewone magisch vierkant). Het bovenstaand vierkant is afgeleid van het volgende gewone magisch vierkant door grondtal 2 te kiezen.
1
8
3
6
4
2
5
0
7
De magische constante is in dit geval 12.

We kunnen een ander vermenigvuldiging magisch vierkant maken door grondtal 3 te kiezen:
31
38
33
36
34
32
35
30
37

  → 
3
6561
27
729
81
9
243
1
2187

Je kunt dus vanuit een gewoon magisch vierkant oneindig veel verschillende vermenigvuldiging magische vierkanten maken. De magische vermenigvuldigingsconstante is gemakkelijk bereken: het grondtal tot de macht (magische constante van het gewone vierkant). Dus bij het bovenstaande vierkant: 312 = 531441.

Magisch vierkant voor zowel som als product

Dat kan ook: de som in elke rij, kolom en diagonaal is 840, het product is 2058068231856000.

46811171021576200203
1960232175546915378
2161611752171905875
13511450871841891368
1502614538911369227
119104108231742255730
116251331205126162207
393413824310029105152